
© Decompiler-VB.net Labo – The truth about P-Code

The truth about P-Code

Introduction

This article has been written to provide better and indispensable information to

users of decompilers since I receive many complaints from customers of others

Visual Basic decompilers because their application weren’t recovered by these

decompilers.

The reason is, when you write a Visual Basic 6.0 application you may choose a

P-Code or Native code compilation, then your application will be compiled to P-

Code or Native code which are very different approaches of compilation, so the

decompilation will be different too.

There is a question you may absolutely ask yourself when you need a

decompiler for a specific application: Is my application compiled into native or

P-Code mode ?

The main problem is that a lot of users got a P-Code decompiler in order to

decompile their application, but released with Native Code…

In fact, P-Code decompiler are today almost useless because 90% of Visual

Basic 6 application are released with Native Code mode. This article will explain

first the difference between P-Code and Native code, and then explain why the

rate of Native code application is so important compared to P-Code

applications.

Distribution of Visual Basic 6.0 applications

Native code applications

P-Code applications

© Decompiler-VB.net Labo – The truth about P-Code

I. P-Code Versus Native Code

When you write a line of code in the IDE, Visual Basic breaks it down into
expressions and encodes the expressions into a preliminary format called op-
codes. In other words, each line is partially precompiled as it is written. Some
lines contain shared information that cannot be precompiled independently
(mainly Dim statements and procedure definitions). This is why you have to
restart if you change certain lines in break mode. The opcodes are compiled
into p-code instructions when you compile (in the background if you have the
Compile On Demand and Background Compile options set).

At run time, the p-code interpreter works through the program, decoding and
executing p-code instructions. These p-code instructions are smaller than
equivalent native code instructions, thus dramatically reducing the size of the
executable program. But the system must load the p-code interpreter into
memory in addition to the code, and it must decode each instruction.

It’s a different story with native code. You start with the same opcodes, but
instead of translating to p-code instructions, the compiler translates to native
instructions. Because you’re not going to be expecting an instant response
while stepping through native code instructions in the IDE, the compiler can
look at code from a greater distance; it can analyze blocks of code and find
ways to eliminate inefficiency and duplication. The compiler philosophy is that,
since you compile only once, you can take as long as you want to analyze as
much code as necessary to generate the best results possible.

These two approaches create a disjunction. How can you guarantee that such
different ways of analyzing code will generate the same results? Well, you
can’t. In fact, if you look at the Advanced Optimizations dialog box (available
from the Compile tab of the Project Properties dialog box) you’ll see a warning:
"Enabling the following optimizations might prevent correct execution of your
program." This might sound like an admission of failure, but welcome to the
real world of compilers. Users of other compiled languages understand that
optimization is a bonus. If it works, great. If not, turn it off.

On the other hand, very few developers are going to be used to the idea of
working in an interpreter during development but releasing compiled code.
Most compilers have a debug mode for fast compiles and a release mode for
fast code. Visual Basic doesn’t worry about fast compiles because it has a no-
compile mode that is faster than the fastest compiler. You get the best of both

© Decompiler-VB.net Labo – The truth about P-Code

worlds, but it’s going to take a little while for people to really trust the compiler
to generate code that they can’t easily see and debug.

Source : http://vb.mvps.org/hardcore/html/p-codeversusnativecode.htm

II. Proportion of P-Code application in the
world

The distribution of Visual Basic P-Code application is very small compared to

Visual Basic Native application (90% of Visual Basic 6 applications are compiled

with Native Code setting -default setting in VB6-), that is one of the reason why

I decided to base VBReFormer on Native Code decompilation instead of P-Code

decompilation.

The great spread of Visual Basic Native application compared to P-Code

applications can be explained by the fact that the default compilation option in

Visual Basic 6.0 is set to « Native Code » compilation, of course because native

application execution time is almost as fast than in C++ applications contrary to

P-Code applications which add an execution level.

Before choosing a decompiler you must know if it was released for Native Code

application or P-Code applications, and if your application was released in P-

Code or Native mode.

Note that P-Code is easier to decompile than Native Code because of its high

level properties.

To know if your application is compiled into Native or P-Code, you will need

help. For that purpose I made a little application which will tell you if your

applications were compiled into Native or P-Code (http://www.decompiler-

vb.net/vbcomptester_en.exe).

Sylvain Bruyere

Decompiler-VB.net Developper

Microsoft Student Partner

http://www.decompiler-vb.net/

http://vb.mvps.org/hardcore/html/p-codeversusnativecode.htm
http://www.decompiler-vb.net/vbcomptester_en.exe
http://www.decompiler-vb.net/vbcomptester_en.exe
http://www.decompiler-vb.net/

